Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization
نویسندگان
چکیده
For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film-ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NO x ) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3-CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NO x reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NO x gas at room temperature, which would have a great development space in the gas sensor field and a great research value.
منابع مشابه
A uniform porous multilayer-junction thin film for enhanced gas-sensing performance.
Highly-uniform In2O3/CuO bilayer and multilayer porous thin films were successfully fabricated using a self-assembled soft template and a simple sputtering deposition technique. The sensor based on the In2O3/CuO bilayer porous thin film shows obviously improved sensing performance to ethanol at a lower working temperature, compared to its single layer counterpart sensors. The response of the In...
متن کاملEnhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres
Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance ...
متن کاملGas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature
In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 s...
متن کاملAg-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance
Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitiv...
متن کاملCuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors
Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different work...
متن کامل